BASICITY OF TRANSITION METAL CARBONYL COMPLEXES

XIII *. REACTIONS OF THE π-CYCLOPENTADIENYL COMPLEXES OF MOLYBDENUM AND TUNGSTEN WITH APROTIC ACIDS

A.G. GINZBURG *, G.G. ALEKSANDROV, Yu.T.STRUCHKOV, V.N. SETKINA and D.N. KURSANOV
Institute of Organoelement Compounds, USSR Academy of Sciences, Moscow 117813 , Vavilou st. 28 (U.S.S.R.)

(Received May 17th, 1980)

Summary

The aprotic acids HgCl_{2} and $\mathrm{SnX}_{4}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ react with the π-complexes $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})(\mathrm{NO})(\mathrm{L})\left(\mathrm{II}, \mathrm{M}=\mathrm{Mo}, \mathrm{W} ; \mathrm{L}=\mathrm{PPh}_{3}\right.$) by attack at the metal center. With HgCl_{2} complexes II yield stable neutral $1: 1$ adducts $\mathrm{CpM}(\mathrm{CO})(\mathrm{NO})(\mathrm{L}) \cdot$ HgCl_{2} (III). In the case of SnCl_{4}, complexes II initially produce the ionic $1: 2$ adducts $\left[\mathrm{CpM}(\mathrm{CO})(\mathrm{NO})(\mathrm{I})\left(\mathrm{SnCl}_{3}\right)\right]^{+} \mathrm{SnCl}_{5}^{-}$(IV) which, as a result of oxidative elimination of CO , turn into the neutral complexes $\mathrm{CpM}(\mathrm{NO})(\mathrm{L})\left(\mathrm{SnCl}_{3}\right)(\mathrm{Cl})$ (V). In reactions of II with SnBr_{4} the corresponding $\mathrm{CpM}(\mathrm{NO})(\mathrm{L})\left(\mathrm{SnBr}_{3}\right)(\mathrm{Br})$ complexes are formed directly. The formation of III-V is accompanied by a considerable increase of the frequencies $\nu(\mathrm{CO})$ and $\nu(\mathrm{NO})$. The structures of the complexes IV ($\mathrm{M}=\mathrm{Mo}$) and $\mathrm{V}(\mathrm{M}=\mathrm{Mo})$ have been established by an X-ray structure analysis.

Introduction

In the molecules of π-complexes of the general formula ($\eta^{n}-\mathrm{C}_{n} \mathrm{H}_{n}$) M(CO)$(L)\left(L^{\prime}\right)$, where the cyclic ligand $\mathrm{C}_{n} \mathrm{H}_{n}=\eta^{5}$-cyclopentadienyl, η^{6}-benzene, L and $\mathrm{L}^{\prime}=\mathrm{CO}$, NO or phosphines, attack of electrophilic reagents is possible at one or more reaction sites, viz. the cyclic η-ligand, the central metal atom M , the oxygen of CO and NO, or the heteroatom of the ligands CS, CN, etc. The direction of attack and the structure of the reaction products depend on the nature of the reagent and the structure of the π-complex, particularly on the ligand environment of the metal atom. Earlier, the authors investigated the

[^0]reactions of the π-complexes of Group VII metals $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)$ (I) with mercuric chloride [2] and tin halides [3,4]. These aprotic acids attack the metal whose basicity is much higher than that of the corresponding $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})_{3}$ as a result of substitution of CO by the donor ligand PPh_{3}. Such an attack involves coordination of the aprotic acid with the M atoms ($M=M n, R e$) and yield either neutral (with HgCl_{2}) or ionic (with SnCl_{4} or SnBr_{4}) complexes with $\mathrm{M}-\mathrm{Hg}$ and $\mathrm{M}-\mathrm{Sn}$ bonds.

In this paper the reactions of aprotic acids with the Group VI metal complexes $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$ (II), which are isoelectronic and isostructural with I , are reported.

$(\mathbb{I O}, M=M O ; \mathbb{I} D, M=W)$

$$
L=P P h_{3}
$$

Unlike the derivatives of manganese and rhenium cyclopentadienyltricarbonyl, the chemistry of complexes II has not so far received much attention [5]. Earlier, the frequencies $\nu(\mathrm{CO})$ and $\nu(\mathrm{NO})$ were noticed to increase in reactions between these complexes and SnCl_{4}, however, reaction products were not isolated and their structures not determined [6].

Results and discussion

Reactions with HgCl_{2}

On addition of an equimolar quantity of HgCl_{2} to red solutions of complexes $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the mercuric chloride rapidly dissolves although in the aiosence of II it is practically insoluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This reaction is accompanied by a fast change of the solution color from red to yellow and several minutes later the solid adducts $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \cdot \mathrm{HgCl}_{2}$ are precipitated.

$+\mathrm{HgCl}_{2}$

(II a, b)

$$
L=P P H_{3}
$$

M
(III c, b)

In the IR spectra of III (Nujol mulls) the frequencies $\nu(\mathrm{CO})$ and $\nu(\mathrm{NO})$ are

TABLE 1
$\nu(\mathrm{CO})$ AND $v(\mathrm{NO})$ FREQUENCIES (IN $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$) IN THE IR SPECTRA OF COMPOUNDS II-VI

	Compound	$\mathrm{M}=\mathrm{Mo}$		$\mathrm{M}=\mathrm{W}$	
		$\nu(\mathrm{CO})$	$\nu($ NO)	$\nu(\mathrm{CO})$	$\nu(\mathrm{NO})$
II	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$	1915	1610	1900	1595
III	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{HgCl}_{2}\right)^{\text {a }}$	1985	1680	1960	1660
IV	$\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})\left(\mathrm{NO}^{(1)}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SnCl}_{3}\right)\right]^{+} \mathrm{SnCl}_{5}^{-}\right.$	2070	1750	2050	1730
V	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{NO})\left(\mathrm{PPH}_{3}\right)\left(\mathrm{SnCl}_{3}\right)(\mathrm{Cl})$	-	1680	-	1655
VI	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{MI}\left(\mathrm{NO}^{(1)}\left(\mathrm{PPH}_{3}\right)\left(\mathrm{SnBr}_{3}\right)(\mathrm{Br})\right.$	-	1670	-	1645

a Nujol mulls.
shifted by $60-70 \mathrm{~cm}^{-1}$ towards larger wave numbers as compared with initial II (Table 1). The compounds are stable in air, practically insoluble in organic solvents and are nonelectrolytes in acetone. The increased frequencies $\nu(\mathrm{CO})$ and $\nu(\mathrm{NO})$ suggest increased positive charges on the metal and coordination of mercury with the M atoms, similar to mercury chloride adducts with $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})_{2} \mathrm{PPh}_{3}[3], \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Co}(\mathrm{CO})_{2}[7]$ and $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cr}(\mathrm{CO})_{3}$ [8].

Among η^{5}-cyclopentadienyl derivatives of Mo and W a large number of 7-coordinate complexes of the type $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})(\mathrm{X})$ [5] (where L is a two-electron, and X is a one-electron ligand) is known with a square pyramidal geometry, $\mathrm{C}_{5} \mathrm{H}_{5}$ being the apical ligand. Compounds III apparently have the same structure, the trans-positions of the CO and NO ligands in the pyramid base being most probably due to steric factors.

Reactions with tin halides

As an excess of SnCl_{4} is added to solutions of complexes IIa, b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the solution instantaneously changes its color from red to yellow and the $\nu(\mathrm{CO})$ and $\nu(\mathrm{NO})$ frequencies of the initial compounds disappear. The reaction products are complexes IVa,b and in their IR spectra the $\nu(\mathrm{CO})$ and $\nu(\mathrm{NO})$ bands are shifted by $130-150 \mathrm{~cm}^{-1}$ towards higher wave numbers (Table 1). Such a strong increase in the frequencies is indicative of an ionic structure for IV, the $\mathrm{M}(\mathrm{CO})(\mathrm{NO})$ fragment being a part of the cation. The properties of complexes IV depend on the nature of the M atom and on the reaction conditions.

The solutions containing IVa ($\mathrm{M}=\mathrm{Mo}$) are unstable and rapidly lose CO. In the case of a small excess of SnCl_{4} (the ratio Mo: $\mathrm{Sn} \sim 1: 2.5$) a mixture of crystals of brown IVa and orange Va is precipitated from the solution of IVa on storage at $0^{\circ} \mathrm{C}$. By an X-ray analysis (see below) IVa was shown to have an ionic structure $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SnCl}_{3}\right)\right]^{+} \mathrm{SnCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}$.

Complex IVa is formed as a result of attack of SnCl_{4} at the molybdenum atom, the SnCl_{3} group becomes attached to Mo and the Cl^{-}anion is displaced to the outer sphere and forms the SnCl_{5}^{-}counterion with the second SnCl_{4} molecule. By addition of $\mathrm{H}_{2} \mathrm{O} *$ this counterion can be transformed into the octahedral $\mathrm{SnCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}$anion. It should be noted that the highly basic neutral

[^1]carbonyl complexes of the Group VI metals $\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{M}=$ Mo, W) [9] and the cyclopentadienyl complex $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{2}$ [10] also yield ionic products with $\mathrm{SnCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}$anions in reactions with SnCl_{4}.

In the case of larger excess of $\mathrm{SnCl}_{4}(\mathrm{Mo}: \mathrm{Sn} \geqslant 1: 3$) in more concentrated solutions and when petroleum ether is added, IV a rapidly (within about 30 minutes) converts, as a result of oxidative elimination of CO , into the neutral covalent complex Va whose structure was also established by an X-ray analysis. The oxidative elimination occurs by an attack of SnCl_{5}^{-}or $\mathrm{SnCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}$on the cation IVa with elimination of CO and SnCl_{4}. The transformation IVa $\rightarrow \mathrm{Va}$ is accompanied by peonounced changes in the IR spectra: the characteristic bands of IVa at 2070 and $1750 \mathrm{~cm}^{-1}$ disappear while a new band $\nu(\mathrm{NO})$ appears at $1680 \mathrm{~cm}^{-1}$.

The reaction of SnCl_{4} with complex $\mathrm{IIb}(\mathrm{M}=\mathrm{W})$ yields a yellow solution which, on addition of petroleum ether, gives the stable yellow-brown complex IVb with the structure $\left.\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~W}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{SnCl}_{3}\right)\right]^{+} \mathrm{SnCl}_{5}{ }^{-}$. In the solid state IVb is stable; on refluxing in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ it slowly releases CO and gradually converts to the respective Vb ($\nu(\mathrm{NO}) 1655 \mathrm{~cm}^{-1}$) but this conversion is much slower than in the case of IVa.

Reactions of II with SnBr_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ occur via the rapid oxidative elimination of CO and yield neutral complexes $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SnBr}_{3}\right)(\mathrm{Br})$ (VIa, b). In the IR spectra of VI, as in those of V, there are no $\nu(\mathrm{CO})$ bands and only the broad $\nu(\mathrm{NO})$ bands at $1670 \mathrm{~cm}^{-1}\left(\mathrm{M}=\mathrm{Mo}\right.$) or $1645 \mathrm{~cm}^{-1}(\mathrm{M}=\mathrm{W})$ are present. It should be noted that III, IV, V and VI are in fact representatives of rather uncommon chiral complexes wherein the metal atom is simultaneously bonded to five different ligands.

M
(II a, b)

$$
L=P P h_{3}
$$

(DII c, b)

Thus attack of the aprotic acids HgCl_{2} and $\mathrm{SnX} \mathrm{X}_{4}(\mathrm{X}=\mathrm{Cl}$ and Br) on the cyclopentadienyl complexes of Mo and W takes place at the central metal atom, which in these π-complexes is the most basic site of the molecule just as in the previously investigated η^{5}-cyclopentadienyl complexes of Mn and Re .

The formation of complexes IV as well as the previously obtained $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mn}\right.$ $\left.(\mathrm{CO})_{2}(\mathrm{~L}) \mathrm{SnCl}_{3}\right]^{+} \mathrm{SnCl}_{5}^{-}[3]$ and the corresponding rhenium complexes [4] can be regarded as a nucleophilic substitution of the halogen atom (Cl or Br) at the tin atom in SnX_{4} by neutral nucleophiles containing a transition metal. By analogy with $\mathrm{O}-, \mathrm{S}-, \mathrm{N}-, \mathrm{P}$ - and other nucleophiles conventional in organic chemistry, the metal complexes exhibiting nucleophilic properties can be referred to as "M-nucleophiles". These reactions can be represented by the following general scheme:

A specific feature of reactions of SnX_{4} with the π-complexes of Mn, Re, Mo, W is that the second stage (b) involves addition of the second $\operatorname{Sn} X_{4}$ molecule to the anion X^{-}with formation of SnX_{5}^{-}; the the case of Mo and W complexes the third stage (c) is the oxidative elimination of CO. In reactions of II with SnBr_{4} stages (a) and (b) are too fast to allow identification of the intermediates by IR spectra.

Determination of crystal and molecular structures

The structures of IVa and Va were established by an X-ray study (see Fig. 1). Atomic coordinates and temperature factors are listed in Tables 2 and 3. The bond lengths and bond angles are given in Tables 4 and 5. Geometrical parameters and stereochemistry * of the complex cation $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(\mathrm{SnCl}_{3}\right)\right]^{+}$in IVa are very close to those found in the neutral Va. This fact is quite understandable, since in general IVa and Va are structural analogues and

[^2]

Fig. 1. The structures of the cation IVa and the molecule Va with main bond lengths (for Va in brackets); and atom numbering.
differ only by the charge and one ligand $X(X=C O$ in $I V a$ and $X=C l$ in $V a)$. The Mo atom coordination in IVa and Va (see Fig. 1) can be regarded as octahedral with a centered face (the Cp ligand occupies three coordination sites) and a Mo coordination number of 7 , or as a distorted tetragonal-pyramidal with the Cp ligand (considered now as occupying one coordination site) at the apex and the remaining four ligands at the pyramid base.

In both structures the most bulky ligands PPh_{3} and SnCl_{3} are in trans-positions relative to each other, the $\mathrm{Sn}-\mathrm{Mo}-\mathrm{P}$ angles being $139.24(6)$ and $142.57(3)^{\circ}$, and the $\mathrm{X}-\mathrm{Mo}-\mathrm{NO}$ angles $107.3(4)$ and $112.3(1)^{\circ}$ in IVa and Va, respectively. In the structure of the complex $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SnCl}_{3}\right)\right]^{+} \mathrm{SnCl}_{5}^{-}$[3] the trans-angles $\mathrm{Sn}-\mathrm{Mo}-\mathrm{P}$ and $\mathrm{OC}-\mathrm{Mn}-\mathrm{CO}$ are $131.1(1)$ and $115.1(4)^{\circ}$, respectively. Obviously the differences between the $\mathrm{Sn}-\mathrm{Mn}-\mathrm{P}$ and $\mathrm{Sn}-\mathrm{Mo}-\mathrm{P}$ angles in IVa and Va are due to the different radii of $\mathrm{Mn}(1.38 \AA$) and Mo ($1.58 \AA$) [11]. As usual, because of the additional $d_{\pi}-d_{\pi}$ interaction, the $\mathrm{Sn}-\mathrm{Mo}$ and Mo-P bonds are shorter than the corresponding sums of atomic radii, $r_{\mathrm{Sn}_{n}}+$ $r_{\mathrm{Mo}}=3.00 \AA$ [12] and $r_{\mathrm{Mo}}+r_{\mathrm{p}}=2.72 \AA$ [13]. The Mo-Sn and Mo-P bond lengths in IVa (2.733(1) and $2.549(1) \AA$) are somewhat greater than in Va ($2.715(1)$ and $2.546(1) \AA$), which is due to the greater competition between the ligands for the electron density on the metal in the cation IVa than in the neutral Va. A similar relationship has been observed in the structures of $\left[\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{SnCl}_{3}\right)\right]^{+}[9]$ and $\left(\mathrm{MeSCH}_{2} \mathrm{CH}_{2} \mathrm{SMe}\right) \mathrm{Mo}(\mathrm{CO})_{3^{-}}$ $\left(\mathrm{SnCl}_{3}\right)(\mathrm{Cl})$ [9], wherein the $\mathrm{Sn}-\mathrm{Mo}$ bond lengths are 2.729 and $2.688 \AA$, respectively. The $\mathrm{Mo}-\mathrm{C}(\mathrm{Cp})$ bond lengths of $2.31-2.36 \AA$ (average $2.33 \AA$) in IVa and 2.29-2.38 \AA (average $2.34 \AA$) in Va are usual for η^{5}-cyclopentadienyl derivatives of molybdenum (e.g. in the structure of $\mathrm{CpMo}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)$ -

TABLE 2
ATOMIC COORDINATES ($\times 10^{5}$ FOR MO AND $\mathrm{Sn}, \times 10^{4}$ FOR OTHER ATOMS) IN STRUCTURES OF IVa AND Va

Atom ${ }^{\text {a }}$	IVa			Va		
	x	\boldsymbol{y}	z	\boldsymbol{x}	y	z
$\operatorname{Sn}(1)$	86277(5)	$34615(7)$	$6722(4)$	$71482(4)$	-11 264(2)	71890 (3)
Sn(2)	60244 (4)	$5691(6)$	$77712(3)$	-	-	-
Mo	$76826(5)$	$13777(7)$	7850 (4)	65329 (4)	-22619(2)	$64759(3)$
Cl(0)	-	-	-	4840 (2)	-1994(1)	$7896(2)$
Ci(1)	$8059(3)$	4660 (4)	-232(2)	8950(2)	-637(1)	$6287(2)$
Cl(2)	10081(2)	3144 (5)	653(2)	$7719(3)$	$7719(3)$	-1023(1)
Cl(3)	$8865(5)$	$4842(4)$	$1516(3)$	5 559(2)	-347(1)	6998(2)
Cl(4)	$7139(2)$	-246(3)	3 681(1)	-	-	
Cl(5)	4 834(2)	1040 (3)	$6813(1)$	-	-	-
Cl(6)	$7063(2)$	486(3)	$7159(1)$	-	-	-
Cl(7)	$4923(2)$	378(4)	$8328(1)$	-	-	-
Cl(8)	$6338(2)$	$2677(3)$	8085(2)	-		-
P	$7979(2)$	-822(2)	1 223(1)	6 069(1)	-3 330(1)	7 203(1)
O(1)	8879(5)	$413(7)$	-20(3)	$9333(7)$	-2515(3)	$7371(5)$
O(2)	8878(6)	$1928(7)$	$2167(4)$	-	-	-
O(3)	$5718(5)$	-1398(6)	$7462(4)$	-	-	-
N	8450 (6)	795(8)	299(4)	$8222(5)$	-2 408(2)	$7168(5)$
C(0)	8449(7)	$1697(7)$	$1654(4)$	-	-	-
C(1)	$6313(7)$	$1987(10)$	965(5)	$5676(6)$	-2675(3)	$4753(5)$
C(2)	$6179(6)$	864(9)	654(5)	$7072(6)$	-2064(3)	4654 (5)
C(3)	6 283(6)	997(11)	39(5)	$7364(6)$	-1991(3)	$4709(5)$
C(4)	6516 (7)	$2223(13)$	-21(6)	$6152(7)$	-1 668(3)	$4831(5)$
C(5)	$6552(7)$	$2852(10)$	569(6)	$5132(6)$	-2 090(3)	4861(5)
C(6)	$9107(6)$	-1338(8)	$1241(4)$	6700 (5)	-3491(2)	8641(4)
C(7)	$9840(7)$	-697(10)	$1615(5)$	7 392(6)	-4 029(3)	8873(5)
C(8)	$10698(8)$	-1089(13)	$1647(6)$	$7757(6)$	-4170(3)	9987(5)
C(9)	10851(8)	-2 102(12)	$1324(6)$	7 396(6)	-3 794(3)	$10890(5)$
C(10)	10120(9)	-2759(12)	968(6)	6696 (6)	-3 26s(3)	$10672(5)$
C(11)	9260 (7)	-2381(10)	922(5)	6366 (5)	-3113(3)	$9559(5)$
C(12)	7 937(6)	-1064(7)	2035 (4)	4352 (5)	-3 593(2)	7 298(4)
C(13)	8344 (7)	-2140(9)	$2343(4)$	4093 (5)	-4 147(3)	$7818(5)$
C(14)	$8259(8)$	-2417(9)	$2944(5)$	$2811(6)$	-4373(3)	$7865(5)$
C(15)	$7812(7)$	-1635(10)	3240 (4)	1786 (5)	-4 036(3)	7 389(5)
C(16)	$7432(7)$	-564(10)	2938 (5)	$2022(5)$	-3488(3)	$6885(5)$
C(17)	7 500(6)	-285(8)	2343 (5)	3330 (5)	-3 258(3)	$6832(4)$
C(18)	7 162(6)	-1900(7)	740(4)	$6872(5)$	-3 862(2)	$6219(4)$
C(19)	$6621(6)$	-2605(10)	993(4)	$6139(5)$	-4 194(3)	$5441(5)$
C(20)	$5975(6)$	-3 388(10)	608(5)	$6775(7)$	-4519(3)	$4564(6)$
C(21)	$5885(8)$	-3464(10)	-28(6)	8131 (7)	-4 427(3)	4 500(6)
C(22)	6416(8)	-2762(10)	-306(5)	8880 (5)	-4198(3)	$5281(5)$
C(23)	$7061(7)$	-i 985(10)	86(4)	8266 (5)	-3 866(3)	$6135(5)$

${ }^{a}$ The atoms $\mathrm{Sn}(2), \mathrm{Cl}(4) \ldots \mathrm{Cl}(8)$ and $\mathrm{O}(3)$ (of the water molecule) form the anion in IVa and the atoms $C(O)$ and $O(2)$ belong to the $C O$ ligand of its cation. in the molecule of $V a$ the atom $C l(O)$ acts as a ligand instead of the CO group in IVa (See the figure).
$\mathrm{C}(\mathrm{CN})_{2} \mathrm{C}(\mathrm{CN})_{2} \mathrm{CH}_{3}$ the average $\mathrm{Mo}-\mathrm{C}(\mathrm{Cp})$ distance is $\left.2.33 \AA[14]\right)$. The bond lengths $\mathrm{Mo}-\mathrm{CO}$ of 1.95(1) \AA and $\mathrm{C}-\mathrm{O}$ of 1.15(1) \AA in IVa and $\mathrm{Mo}-\mathrm{Cl}$ of $2.444(2) \AA$ in Va are unexceptional. The nitrosyl ligands * are linearly coordi-

[^3]TABLE 3
ANISOTROPIC TEMPERATURE FACTORS IN THE FORM $T=\operatorname{cxp}\left[-\frac{1}{40}\left(B_{11} h^{2} a^{*} 2+\ldots+2 \beta_{12} h h a^{*} b^{*}+\ldots\right)\right]$ IN STRUCTURES OF IVa AND Va

Atom.	IVa						Va					
	$B_{1!}$	B_{22}	B_{33}	B_{12}	H_{13}	${ }^{23}$	β_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$\mathrm{Sn}(1)$	67(1)	41(1)	57(1)	-14(1)	26(1)	2(1)	31(1)	25(1)	33(1)	3(1)	O(1)	2(1)
$\mathrm{Sn}(2)$	34(1)	35(1)	32(1)	-2(1)	6(1)	2(1)	-	-	-	-	(-
Mo	41(1)	32(1)	$35(1)$	-2(1)	$9(1)$	3(1)	24(1)	23(1)	19(1)	2(1)	4(1)	-1(1)
$\mathrm{Cl}(0)$	-	-	-	-	-	-	52(1)	40(1)	51(1)	0(1)	9(1)	-2(1)
$\mathrm{Cl}(1)$	101(2)	72(2)	119(3)	-3(2)	24(2)	53(2)	46(1)	47(1)	109(2)	13(1)	31(1)	3(1)
Cl(2)	55(2)	138(3)	100(3)	$-18(3)$	17(2)	13(2)	83(1)	82(1)	45(1)	-1(1)	-22(1)	15(1)
$\mathrm{Cl}(3)$	275(6)	73(2)	133(4)	-83(4)	142(4)	-47(2)	39(1)	32(1)	$71(1)$	$-5(1)$	4(1)	1(1)
$\mathrm{Cl}(4)$	54(1)	60(1)	33(1)	10(1)	(1)	10(1)	-	-	-	-	-	-
$\mathrm{Cl}(5)$	50(1)	79(2)	48(2)	4(1)	$-5(1)$	20(1)	-	-	-	-	-	-
$\mathrm{Cl}(6)$	54(1)	101(2)	46(1)	0(1)	19(1)	20(1)	-	-	-	-	-	-
$\mathrm{Cl}(7)$	48(1)	121(3)	56(2)	-0(2)	4(1)	1(2)	-	-	-	-	-	-
Cl(8)	72(2)	38(1)	129(3)	1(1)	-10(2)	$-9(2)$	-	-	-	-	-	-
p	39(1)	30(1)	27(1)	-6(1)	5(1)	-1(1)	20(1)	22(1)	23(1)	-1(1)	0 (1)	1(1)
O(1)	72(4)	60(4)	48(4)	2(3)	33(3)	-2(3)	93(4)	50(3)	52(3)	19(3)	-12(3)	-5(2)
O(2)	103(G)	52(4)	48(4)	-13(4)	2(4)	$-9(3)$	-	-	-	-	-	-
O(3)	79(4)	41(3)	56(4)	-11(3)	9(3)	-6(3)	-	-	-	-	-	-
N	68(5)	42(4)	37(4)	-6(4)	10(4)	2(3)	22(2)	17(2)	50(3)	-3(2)	25(2)	-4(2)

人
人
デo
人

TABLE 4
BOND LENGTHS (Ā)

Bond	IVa	Va	Bond	IVa	Va
Mo-Sn(1)	2.733(1)	$2.715(1)$	$\mathrm{P}-\mathrm{C}(6)$	1.81(1)	1.82(1)
Mo-Cl(O)	-	2.444(2)	$\mathrm{P}-\mathrm{C}(12)$	1.81(1)	1.83(1)
Mo- \mathbf{P}	2.549(2)	2.546(1)	$\mathrm{P}-\mathrm{C}(18)$	1.81(1)	1.83(1)
Mo-N	1.82(1)	1.91(1)	$\mathrm{N}-\mathrm{O}(1)$	1.17(1)	1.17(1)
Mo-Co	1.95(1)	-	$\mathrm{C}(0)-\mathrm{O}(2)$	1.15 (1)	-
Mo-C(1)	2.36(1)	2.36(1)	Av.C-C(Cp)	1.40(2)	1.41(2)
Mo-C(2)	2.33(1)	2.31(1)	Av.C-C(Ph)	1.38(2)	1.39(2)
Mo-C(3)	2.33(1)	$2.29(1)$	Sn(2)-C1(4) ${ }^{\text {a }}$	2.381(3)	-
Mo-C(4)	2.31(1)	2.35(1)	$\mathrm{Sn}(2)-\mathrm{Cl}(5)$	2.399(3)	-
Mo-C(5)	2.31(1)	2.38(1)	$\mathrm{Sn}(2)-\mathrm{Cl}(6)$	2.376(3)	-
$\mathrm{Sn}(1)-\mathrm{Cl}(1)$	2.305(4)	2.363(2)	$\mathrm{Sn}(2)-\mathrm{Cl}(7)$	$2.377(3)$	-
$\mathrm{Sn}(1)-\mathrm{Cl}(2)$	2.290 (4)	2.329(2)	$\mathrm{Sn}(2)-\mathrm{Cl}(8)$	2.383(3)	-
$\mathrm{Sn}(1)-\mathrm{Cl}(3)$	$2.310(5)$	2.364(2)	$\mathrm{Sn}(2)-\mathrm{O}(3)$	2.235(7)	-

$a^{\prime} \operatorname{Sn}(2)$. Sn atom in the anion of IVa.
nated with Mo (the bond lengths Mo-N 1.92(1) \AA in IVa and $1.91(1) \AA$ in Va, $\mathrm{N}-\mathrm{O}$ 1.17(1) and 1.17(1) \AA; angles $\mathrm{Mo}-\mathrm{N}-\mathrm{O}$ 176(8) and 167.1(1) ${ }^{\circ}$) and act as three-electron donors in both complexes. Accordingly, the Mo atoms in IVa and Va obey the EAN rule.

The $\mathrm{SnCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}$anion in IVa has the usual octahedral structure. The bond lengths ($\mathrm{Sn}-\mathrm{O} 2.235(7) \AA$ and $\mathrm{Sn}-\mathrm{Cl} 2.377-2.399 \AA$) are close to those found ($\mathrm{Sn}-\mathrm{O} 2.24 \AA, \mathrm{Sn}-\mathrm{Cl} 2.37-2.38 \AA$) in the same anion in the structure of $\left[\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{SnCl}_{3}\right)\right]^{+} \mathrm{SnCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}$[9].

In the crystal of IVa the water molecule of the anion forms a hydrogen bond $\mathrm{O}(3)-\mathrm{H} . . \mathrm{Cl}(8)(1-x, 1 / 2+y, 3 / 2-z)$ by one of its H atoms with the chlorine atom of the neighbouring anion. This bond is $3.21 \AA$ long, the $\mathrm{Sn}-\mathrm{O}(3) \ldots$ $\mathrm{Cl}(8)$ angle being 120°.

This study therefore shows that π-complexes of Mo and W with the donor ligands PPh_{3} exhibit properties of strong organometallic bases and readily react with the aprotic acids HgCl_{2} and $\mathrm{SnX}_{4}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$. Aprotic acids attack the metal atom which is thus the most basic site of the molecular. Products of reactions with aprotic acids have been isolated and their structure established by X-ray and IR spectral study.

Experimental

The starting compounds IIa and IIb were cbtained as previously described [15].

Preparation of IIIa and IIIb. To the solution of 0.1200 g of IIa or 0.1425 g of IIb (0.25 mmol) in $6-8 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ an exact amount of finely powdered $\mathrm{HgCl}_{2}(0.0680 \mathrm{~g}, 0.25 \mathrm{mmol})$ is added under magnetic stirring. Mercuric chloride rapidly dissolves producing a clear yellow solution (the starting IIa and IIb are red in color) and after 5-10 minutes finely crystalline powders of the air-stable yellow complexes IIIa and IIIb) precipitate. The precipitate is filtered off, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent is removed in vacuo. The yield is close to theory.
TABLE 5
bond angles (DEGREES) IN STRUCTURES JVa AND Va

Angle	IVa	Va	Angle	IVa	Va	Angle	IVa	Va
$\mathrm{Sn}(1)-\mathrm{Mo}-\mathrm{P}$	139.24(6)	142.57(3)	$\mathrm{N}-\mathrm{Mo}-\mathrm{Cp}_{\mathrm{p}}$	126.4	122.8	$\mathrm{C}(6)-\mathrm{P}-\mathrm{C}(12)$	104.2(4)	102,4(2)
$\mathrm{Sn}(1)-\mathrm{Mo}-\mathrm{Cl}$	-	74.22(4)	$\mathrm{OC}-\mathrm{Mo}-\mathrm{Cp}$	125.9	-	C (6) $-\mathrm{P}-\mathrm{C}-(18)$	108.5(4)	107.0(2)
$\mathrm{Sn}(1)-\mathrm{Mo}-\mathrm{N}$	77.5(3)	79,8(2)	$\mathrm{Mo}-\mathrm{Sn}(1)-\mathrm{Cl}(1)$	117.3(1)	117.4(1)	$\mathrm{C}(12)-\mathrm{P}-\mathrm{C}(18)$	104.8(4)	104.6(2)
$\mathrm{Sn}(1)-\mathrm{Mo}-\mathrm{CO}$	75.7(3)	-	$\mathrm{Mo}-\mathrm{Sn}(1)-\mathrm{Cl}(2)$	115.7(1)	116.4(1)	Av. $\mathrm{C}-\mathrm{C}-\mathrm{C}(\mathrm{Cp})$	109(1)	109(1)
$\mathrm{Sn}(1)-\mathrm{Mo}-\mathrm{Cp}^{\text {a }}$	107(4)	106(1)	$\mathrm{Mo}-\mathrm{Sn}(1)-\mathrm{Cl}(3)$	115;0(2)	119,1(1)	Av. $\mathrm{C}-\mathrm{C}-\mathrm{C}(\mathrm{Ph})$	120(1)	120(1)
$\mathrm{P}-\mathrm{Mo}-\mathrm{Cl}$	-	82.70(5)	$\mathrm{Mo}-\mathrm{P}-\mathrm{C}$ (6)	111.0(3)	114.8(2)	$\mathrm{O}(3)-\mathrm{Sn}(2)-\mathrm{Cl}(8)$	179.1(2)	-
$\mathrm{p}-\mathrm{Mo}-\mathrm{N}$	80.2(3)	82,4(2)	$\mathrm{Mo}-\mathrm{p}-\mathrm{C}(12)$	116.5 (3)	119.2(2)	$\mathrm{O}(3)-\mathrm{Sn}(2) \mathrm{Cl}(\mathrm{cis})$	84.1-87.2	-
$\mathrm{P}-\mathrm{Mo}-\mathrm{CO}$	79.0(3)	-	$\mathrm{Mo}-\mathrm{P}-\mathrm{C}(18)$	111.2(3)	107.9(2)	$\mathrm{Cl}(4)-\mathrm{Sn}(2)-\mathrm{Cl}(5)$	170.5(1)	-
$\mathrm{p}-\mathrm{Mo}-\mathrm{Cp}$	113.3	111.2	$\mathrm{Mo}-\mathrm{N}-\mathrm{O}(1)$	176.5(8)	167(1)	$\mathrm{Cl}(6)-\mathrm{Sn}(2)-\mathrm{Cl}(7)$	172.2(1)	-
$\mathrm{Cl}(\mathrm{O})-\mathrm{Mo}-\mathrm{N}$	-	112.3(1)	$\mathrm{Mo}-\mathrm{C}-\mathrm{O}(2)$	177.1(8)	-	$\mathrm{Cl}-\mathrm{Sn}(2)-\mathrm{Cl}(\mathrm{cis})$	88.9 95.8(1)	-
$\mathrm{Cl}(\mathrm{O})-\mathrm{Mo}-\mathrm{Cp}$	-	124.2	$\mathrm{Cl}-\mathrm{Sn}(1)-\mathrm{Cl}(2)$	101.4(2)	101.3(1)	-	-	
$\mathrm{N}-\mathrm{Mo}-\mathrm{CO}$	107.3(4)	-	$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(3)$	104.5(2)	98.3(1)	-	-	
-		-	$\mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{Cl}(3)$	100.6(2)	101.1(1)	-	-	

${ }^{a} \mathrm{Cp}$ is a centroid of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand.

TABLE 6
MAIN TORSIONAL ANGLES τ (DEGREES) CHARACTERIZING THE MUTUAL LIGAND ORIENTATION IN IVa AND Va

Ligand	$\begin{aligned} & \text { IVa } \\ & \mathrm{X}=\mathrm{CO} \end{aligned}$	$\begin{aligned} & \mathrm{Va} \\ & \mathrm{X}=\mathrm{Cl} \end{aligned}$	Angle	$\begin{aligned} & \text { IVa } \\ & \mathrm{X}=\mathrm{CO} \end{aligned}$	Va $\mathbf{X}=\mathbf{C l}$
Sn(1)MoPC(6)	-24.8	-20.6	PMoSn(1)Cl(1)	145.3	130.0
Sn(1)MoPC(12)	94.2	101.4	PMoSn(1)Cl(2)	25.5	9.8
Sn(1)MoPC(18)	-145.7	-139.8	PMoSn(1)Cl(3)	-91.3	-111.7
NMoPC(6)	32.8	41.4	XMoSn(1)Cl(1)	-161.4	-175.9
NMoPC(12)	151.8	163.3	XMoSn(1)Cl(2)	78.9	63.3
NMoPC(18)	-88.1	-77.8	$\mathrm{XMoSn}(1) \mathrm{Cl}(3)$	-37.9	-57.6
XMoPC(6)	-77.2	-72.4	NMoSr(1)Cl(1)	86.9	67.3
XMoPC(12)	41.9	49.5	NMoSn(1)Cl(2)	-32.9	-52.9
XMOPC(18)	161.9	168.4	$\mathrm{NMOSn}(1) \mathrm{Cl}(3)$	-149.7	-174.4

Preparation of IVa, Va. To $0.12 \mathrm{~g}(0.25 \mathrm{mmol})$ of IIa in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ a $2-3$-fold excess of SnCl_{4} in $2-3 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added. The solution color changes instantaneously from red to yellow and in the IR spectrum the $\nu(\mathrm{CO})$ and $\nu(\mathrm{NO})$ bands of IIa disappear and the bands of IVa appear. On storage of the soiutions at $0-2^{\circ} \mathrm{C}, \mathrm{CO}$ is gradually evolved concurrentiy with a decrease of the intensity of the bands of IVa and an appearance of the ν (NO) band of Va at $1675-1680 \mathrm{~cm}^{-1}$. On addition of 2 to 4 volumes of petroleum ether at $0^{\circ} \mathrm{C}$ a mixture of IVa and Va crystals is formed on the walls of the reaction vessel and can be separated mechanically. Without addition of petroleum ether crystallization is slower and mainly crystals of Va are formed. IVa is moderately and Va is very stable in air.

Preparation of $I V b$. To $0.1430 \mathrm{~g}(0.25 \mathrm{mmol})$ of IIb in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ an excess of SnCl_{4} is added, changing the color of the solution from red to yellow and giving rise to the IVb bands in the IR spectrum. After addition of petroleum ether a yellow-brown oil precipitates which rapidly crystallizes on trituration. The crystals are filtered off, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent removed in vacuo. The yield is about 90%; IVb is stable in air.

Preparation of VIa and VIb. To 0.25 mmol of IIa or IIb in $5 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2} 0.5 \mathrm{~g}$ (1.0 mmol) of SnBr_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added. CO is rapidly liberated and complexes VIa or VIb, which are practically insoluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, precipitate from the solution with a yield close to theory. The analytical data and properties of the complexes III-VI are given in Table 7.

Determination of the crystal structure of IVa and Va

Crystals of IVa and Va are monoclinic, the cell parameters being respectively: $a=15.492(5)$ and 10.086(1); $b=10.787(4)$ and 22.069(3); $c=21.809(9)$ and $11.610(2) \AA ; \beta=107.16(3)$ and $89.91(1)^{\circ} ; D_{\text {(measured) }}=1.80$ and $1.78 ; D_{\text {(caled.) }}=$ 1.86 and $1.78 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$, space group $P 2_{1} / c$,

Experimental data were obtained with a Syntex P2 2_{1} automatic diffractometer, λ Mo, graphite monochromator, $\theta / 2 \theta$ scan, $2^{\circ} \leqslant 2 \theta \leqslant 46^{\circ}$ for IVa and $2^{\circ} \leqslant 2 \theta \leqslant 50^{\circ}$ for $\mathrm{Va} ; 3570$ and 3710 independent reflections with $F^{2}>2 \sigma$ for IVa and Va respectively. Both structures were solved using the heavy atom method and refined by full-matrix least squares with anisotropic thermal
TABLE 7
analytical data and properties of ill-VI

Compound	Color	M.p. (${ }^{\circ} \mathrm{C}$)	Formula	Analysis found (Calcd.) (\%)				
				C	H	$\mathrm{Hg} / \mathrm{Sn}$	$\mathrm{Cl} / \mathrm{Br}$	Other
IIIa	yellow	160(d)	$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{NO}_{2} \mathrm{PMOHHgCl}_{2}$	38.25	3.14	26.54	-	3.96(P)
				(38.27)	(2.66)	(26.65)		4.12
H1b	y cllow	185(d)	$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{NNO}_{2} \mathrm{PWH}_{5 \mathrm{Cl}}^{2}$	33.98	2.53	23.70	8.84	-
				(24.10)	(2.38)	(23.80)	(8.45)	
IVa	brown	-	$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{PMoSn}_{2} \mathrm{Cl}_{8}$	28.10	2.36	23.06	28.97	-
				(28.25)	(2.16)	(23.26)	(29.20)	
IVb	yellow	145-148	$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{NNO}_{2} \mathrm{PWSO}_{2} \mathrm{Cl}_{8}$	$26,50$	2.19		26.27	16.90(W)
				(26.42)	(1.83)	(21.78)	(26.05)	(16.88)
Va	orange	205-208	$\mathrm{C}_{23} \mathrm{H}_{2}{ }^{\text {NOPMOSnCl4 }}$	38.17	2.84	17.04	20.79	(16.88)
				(38.71)	$(2,80)$	(16.95)	(19.92)	
Vla	orange	177-180	$\mathrm{C}_{2} \mathbf{3 H}^{2} \mathrm{ONOPMOSnBr} 4$	30.95	2.36	13.86	-	1.51(N)
				(30.95)	(2.24)	(13.30)		(1.57)
VIb	cherry red	188-190	$\mathrm{C}_{23} \mathrm{H}_{20}$ NOPWSnBr4	27.72	2.04	11.92	33.54	-
				(28.18)	(2.04)	(12.11)	(32.67)	

parameters to $R=0.0516\left(R_{\mathrm{G}}=0.0615\right)$ for IVa and $R=0.0542\left(R_{\mathrm{G}}=0.0615\right)$ for Va. Determination of cell parameters indicated that VIa is isostructural with Va.

References

1 A.G. Ginzburg, V.N. Setkina and D.N. Kursanov, J. Organometal. Chem., 182 (1979) C1.
2 A.G. Ginzburg. G.K.I. Mogamedov, S.A. Frenkel, V.N. Sctkina and D.N. Kursanov, Izv. Academii Nauk SSSR, Ser. Khim., (1978) 2405.
3 A.G. Ginzburg, N.G. Bokyi, A.I. Yanovsky, Yu.T. Struchkov, V.N. Setkina and D.N. Kursanov, J. Organometal. Chem.. 136 (1977) 45.
4 A.G. Ginzburg, V.N. Sethina and D.N. Kursanov, Izv. Aced. Nauk SSSR. Ser. Khim., (1979) 894.
5 K.W. Barnett, J. Organometal. Chem., 44 (1972) 1.
6 B.V. Lokshin, E.B. Rusach, N.E. Kolobova, Yu.V. Makarov, N.A. Ustynyuk, V.I. Zdanovich. A.Zh. Zhakaeva and V.N. Setkina, J. Organometal. Chem., 108 (1976) 353.
7 I.W. Nowell and D.R. Russel, J. Chem. Soc.. Dalton Trans., (1972) 2393.
8 G.K.I. Magomedov, A.I. Gusev, A.S. Frenkel, V.G. Syirkin, L.I. Chaplina and S.N. Gurkova, Kcordinaz. Chimia, 2 (1976) 257.
9 F.W.B. Einstein and J.S. Field, J. Chem. Soc., Dalton Trans., (1975) 1628.
10 H. Werner, R. Feser and W. Buchner, Chem. Ber., 112 (1979) 834.
11 V.G. Andrianov, Yu.Y. Struchliov, and B.P. Birukov, Zh. Strukt. Khim., 10 (1969) 1129.
12 R.I. Docdens and L.F. Dahl. J. Amer. Chern. Soc.. 87 (1965) 2576.
13 L. Pauling, The Nature of the Chemical Bond, 3rd Ed., Cornell University Press, Ithaca, 1960.
14 M.R. Churchill and S.W.-Y. Chang. Inorg. Chem.. 14 (1975) 98.
15 H. Brunner, J. Organometal. Chem., 16 (196Э) 119.
16 R. Kummer and W.A.G. Graham, Inorg. Chem.. 7 (1968) 523.
17 T. Takano, Bul. Chem. Soc. Japan, 46 (1973) 522.

[^0]: * For part XII and preliminary communication see ref. 1.

[^1]: * Source of water may be traces of $\mathrm{H}_{2} \mathrm{O}$ in the solvent, in the SnCl_{4} and/or atmospheric moisture.

[^2]: * Values of certain torsional angles characterizing the mutual orientation of ligands in IVa and Va are given in Table 6.

[^3]: * The closeness of the Mo-NO and Mo-CO as well as the $N-O$ and $C-O$ bond lengths in IVa allows a possibility of disorder with the NO and CO ligands substituting each other.

